OSSTEM IMPLANT SYSTEM

2012 PRODUCT CATALOG

for KIT & GBR

Contents | OSSTEM IMPLANT

234 Bone Profiler	234 Trephine Drill	III III IIII IIII IIII IIII	235 Prosthetic KIT	236 TS Prosthetic KIT
237 Hand Driver	237 Machine Screw Driver	238 O-ring Abutment Driver	238 Rigid Outer Driver	239 Solid Abutment Driver
239 Excellent Solid Abutment Driver	239 Octa Abutment Drive	240 OSSTEM Torque Driver	Path Probe	240 Connector
241 Driver Handle	241 Dalbo Plus Screw Driver	Finising Reamer Set	242 Reamer Bite	242 Reamer Tip
243 CAS-KIT	244 CAS Drill	244 Stopper	245 LAS-KIT	247 MS KIT
248 Ortho KIT	249 Bone Screw KIT	250 Custom KIT	251 Osteo KIT	252 Osteotome KIT
253 Sinus KIT	255 Bone Spreader KIT	256 Ridge Split KIT- Straight	257 Ridge Split KIT- offset	258 OsstemGuide KIT
263 Screw removal KIT	Reverse Driver	264 Guide	264 Screw Holder	265 Re-tap
265 ABT Removal Tool	266 Slot Driver	266 Torque Handle	266 Removal Bur	267 Screw Remover

OSSTEM HISTORY

2011	Dec Introduces and commences commercial production of K2	2007	М
	Nov Develops and begins commercial production of Smart	2006	
	Membrane	2000	D
	Oct Registers and obtains approval from Health Canada		
	Develops and begins commercial production of USII SA and		
	Sep Establishes subsidiary offices in Dacca . Bandadesh and Ho		N
	Chi Minh City, Vietnam [OSSTEM Bangladesh Ltd. and		Se
	OSSTEM IMPLANT Vina Co., Ltd.]		
	Develops and begins commercial production of SSIII SA		A
	Registers and obtains approval from the Ministry of Health		
	Aug Establishes subsidiary offices in Manila, Philippines and		Ju
	Vancouver, Canada [OSSTEM Philippines Inc. and HiOssen		
	Implant Canada Inc.]		A
	Jul Develops and begins commercial production of CustomFit		
	Establishes subsidiary offices in Almaty, Kazakhstan		
	[OSSTEM IMPLANT LLP]		Ja
	Jun Develops and begins commercial production of TSII SA		
	Hosts 'OSSTEM World Meeting 2011 in Seoul'		
	Apr Develops and begins commercial production of LAS Kit Establishes subsidiary offices in Jakarta Indonesia IPT	2005	D
	OSSTEM Indonesia]		
	Mar Establishes subsidiary offices in Guadalajara, Mexico		
	[HiOssen de Mexico]		M
	Feb Develops and begins commercial production of TSIV SA		Al M
2010	Nov Develops and begins commercial productions of SSII SA		
_	Aug Develops and begins commercial productions of TSIII Ultra-		Ja
- 1	Jun Develops and begins commercial productions of TSIII HA and	2004	
_	CAS Kit	2004	N
_	Opens 'OSSTEM World Meeting 2010 in Beijing'		Ju
- 1	Apr Develops and begins commercial productions of Osstem		A
_	Mar Develops and begins commercial productions of TSIII SA	2002	0
2009			A
	Oct Registers and obtains approval from Health, Labor and		
	Welfare in Japan May Hosts (OSSTEM World Meeting 2009 in Bangkok'		Ja
	Jan Certifies PEP7 (the world's first new Osseo-inductive	2001	М
	compound)		
2008			Ja
	Nov Develops and begins commercial productions of SS Ultra- wide	1999	D .
	Jun Develops and begins commercial productions of GSIII	1007	
	Apr Holds 'OSSTEM World Meeting 2008 in Seou'	1991	D
	Mar Opens ATC Training Center		
	Jan Establishes USSTEM Bone Science Institute		Ja
2007	Oct Establishes subsidiary offices in Sydney, Australia [Osstem	1995	D
	Australia PTY Ltd.]	1992	
	Jun Registers and obtains approval from the TGA in Australia		In
	way Develops and begins commercial production of US Ultra- wide		
	Apr Hosts 'OSSTEM World Meeting 2007 in Seoul'		
	Begins commercial production of V-ceph		

KIT

2007	Mar Develops and begins commercial production of MS
	Lists on KOSDAQ (KRX: Korea Exchange)
2006	 Lists on KOSDAQ (KRX: Korea Exchange) Dec Establishes subsidiary offices in Bangkok, Thailand and Kuala Lumpur, Malaysia [OSSTEM Thailand Co., Ltd. and OSSTEM Malaysia SDN, BHD] Nov Registers and obtains approval from the SFDA in China Sep Establishes subsidiary office in Philadelphia, U.S.A [HiOssen Inc.] Aug Establishes subsidiary offices in Beijing, China / Singapore and Hong Kong [OSSTEM China Co., Ltd. / OSSTEM Singapore Pte Ltd. and OSSTEM Hong Kong Ltd.] Jul Establishes subsidiary office in Tokyo, Japan [OSSTEM Japan Corp.] Apr Registers and obtains the GOST-R certification in Russia Opens 'OSSTEM World Meeting 2006 in Seoul' Publishes the '2006 OSSTEM IMPLANT SYSTEM」 -
	Introduction and particulars of implant system Jan Establishes the subsidiary offices in Moscow, Russia and Mumbai, India [OSSTEM LLC. and OSSTEM IMPLANT India Pvt Ltd.]
2005	Dec Registers and obtains approval by the DOH in Taiwan Establishes the subsidiary office in Ashborn, Germany
	May Develops and begins commercial production of GSII Apr Hosts 'OSSTEM World Meeting 2005 in Seoul' Mar Obtains KGMP(Korean Good Manufacturing Practice) in Korea
	Jan Establishes the subsidiary office in Taipei, Taiwan [OSSTEM Corporation]
2004	NovDevelops and begins commercial production of SSIIIJulDevelops and begins commercial production of USIIIAprOpens 'OSSTEM World Meeting 2004 in Seou'
2002	Oct Develops and begins commercial production of SSII Aug Registers and obtains approval by the FDA in the USA Develops and begins commercial production of USII Jan Establishes OSSTEM Implant R&D Center
2001	Mar Establishes AIC(Apsun Dental Implant Research & Education Center) Jan Obtains CE-0434 certification
1999	Dec Obtains ISO-9001 certification
1997	Dec Begins commercial production under the brand name of OSSTEM Jan Establishes OSSTEM IMPLANT Co., Ltd. in Seoul, Korea
1995	Develops dental implants and acquires industrial license
1992	Initiates the development of dental implant system

OSSTEN NPLANT SYSTEN

KIT

Fixture and Restorative Components

Early & Esthetic OSSTEM IMPLANT

KIT

New Product

Name	Code	Image	Page
123 Kit	H123K		P 213
Taper Ultra Kit	HULTPK		P 215
LAS-KIT Plus	HLRSNKP		P 244

Upgraded Products

Namo	Code	Image 7		nage 개서 사항				
Inditie	Oode	Before	After	세번 시영	r age			
Machine Screw Driver	AMSD09S, AMSD09L, AMSD12S, AMSD12L, AMSD12E	Y	Y	Add holding function	P 235			
OSSTEM Torque Driver	OTH12S			Add holding function	P 238			
Taper Cortical Drill	TCD4C35, TCD4C40, TCD4C45, TCD4C50	140	3	Optimization of Taper Cortical Drill diameter	P 222			

Taper KIT (OTSK)

New Hanaro KIT (HKA2)

X

Taper Simple KIT (OTSSK)

123 KIT (H123K)

Ultra KIT (HULTRK)

F6.0 Cortical Drill

CD4C60

Direct Drill 3D5213FNLC 3D5513FNLC

3D4613FNLC

Cir 85 -10

c4.6.,13

SideCut Drill

OSLMD20M

Trial Pin

UWFTP52 UWFTP55

Trephine Drill TD42S

Three Cutter Twist Drill

Use range	e (Use 🗾)				
USII	SSII	TSII	Liltra wido	MS	08
USIII	SSIII	TSIII	Ollia-wide		03

Taper Ultra KIT (HULTPK)

Э	e)))))	1																														
SI	SSII	I				Ī	Ī	Γ				1	-	S	I	I							U		tr	2	l-	•	٨	/i	c	de	э					
SI	SSIII	I										I	Ś	3			I					I	ι	J	tı	ſ	3.	-1	Λ	V	ic	d	e				r	v

ASOW (Components of lower plate)

Drill selection tip according to anatomy condition

General length markings of OSSTEM equipment and the tip length of the twist drill

General length marks of OSSTEM tools Based on the thick marking line (10 and 11.5mm), upper 13 and 15mm and lower 7 and 8.5mm positions are marked.

Drill diameter	Drill tip size
ø 2.0mm	0.6mm
ø 2.7mm	0.8mm
ø 3.0mm	0.9mm
ø 3.3mm	1.0mm
ø 3.6mm	1.0mm
ø 3.8mm	1.0mm
ø 4.1mm	1.0mm
ø 4.3mm	1.0mm
ø 4.6mm	1.0mm

Surgical Instruments for OSSTEM IMPLANT

-

• Package unit : each part

• Long stopper (6 mm) : Posterior surgery may be performed even without drill extension

- The color coding on the stopper indicates the drill length
- The tip length of a 2.0 twist drill is 0.6 mm, and the other tip length of drills, 0.8mm~1mm

Long Drill

L	ø 2.0	ø 2.7	ø 3.0	ø 3.15	ø 3.3	ø 3.6	ø 3.8	ø 4.1	ø 4.3	ø 4.6
13	TDE2013FNLC		3D3013FNLC				3D3813FNLC			3D4613FNLC
15	TDE2015FNLC	3D2715FNLC01	3D3015FNLC01	3D3115FNLC01	3D3315FNLC01	3D3615FNLC01	3D3815FNLC01	3D4115FNLC01	3D4315FNLC01	3D4615FNLC01

-

• Package unit : each part

• Cuts the stopper of a 15 mm drill to facilitate depth adjustment in the ridge

• The laser marking indicates the length, thereby enabling all drilling lengths (7-15 mm) using one drill

• Handles are color-coded to indicate drill length

Extra Long Drill

LD	ø 2.0	ø 2.7	ø 3.0	ø 3.15	ø 3.3	ø 3. 6	ø 3.8	ø 4.1	ø 4. 3	ø 4.6
	TDE2015FNEC	3D2715FNEC	3D3015FNEC	3D3115FNEC	3D3315FNEC	3D3615FNEC	3D3815FNEC	3D4115FNEC	3D4315FNEC	3D4615FNEC

• Package unit : each part

• For sufficient intermaxillary gap as in the anterior part, drilling may be performed even without drill extension

- The laser marking indicates the length, thereby enabling all drilling lengths (7-15 mm) using one drill
- Handles are color-coded to indicate drill length

ø 3.8	ø 4.1	ø 4.3	ø 4.6
3D3807LC01	-	-	-
3D3808LC01	-	-	-
3D3810LC01	-	-	-
3D3811LC01	3D4111LC01	3D4311LC01	3D4611LC01
3D3813LC01	-	-	-

123 Twist Drill

1/2/3	ø 2.2/3.0	ø 3.0/3.6	ø 3.0/3.6/4.1	ø 3.0/4.1/4.6						
Short	2D2230S	2D3036S	2D3041S	2D3046S						
Long	2D2230L	2D3036L	2D3041L	2D3046L						
Coloring	Yellow	Green	Blue	Red						
Y-Dim.	0.7mm									

Packing unit: each part

• The color of 123drill handle part means the diameter and kind of main mixture to be used.

• Install the drill stop in order to adjust the drilling depth to intended level.

• 123 twist drill has good cutting force and control of drilling depth may be difficult; therefore, it is highly recommended to use the drill stop.

123 Drill Stop

	ODS06	ODS07	ODS08	ODS09	ODS11	ODS12	ODS14	ODS16
L(mm)	6.2	7	8	9.5	11	12.5	14	16
Coloring	Purple	White	Yellow	Red	Blue	Green	Black	Purple

Packing unit: each part

KIT %

• The length of drill stop means the remained actual length when the drill stop is installed on 123 twist drill.

• The lengths are differentiated with colors for convenient identification of lengths and return to KIT.

ø

Taper Drill Purpose of distinguish diameter Color coding

Length of Dril

ø6.0

GLOBAL STANDARD OSSTEM IMPLANT

Name	D1	D2	Code
4.6 Twist Drills	Ø 4.6	-	3D4613FNLC
5.2 Direct Drill	Ø 4.6	Ø 5.2	3D5213FNLC
5.5 Direct Drill	ø 4.6	Ø 5.5	3D5513FNLC
6.2 Direct Drill	Ø 5.5	Ø 6.2	3D6213FNLC
6.5 Direct Drill	Ø 5.5	Ø 6.5	3D6513FNLC

• Direct drill: 2-stepped drill equipped with both pilot and twist drill function 1. Enables final drilling without pilot drilling

2. Enhancement of initial fixation in the extract socket by decreasing the dead space at the apex area

Spec.	ø 3 .5	ø 4.0	ø 4.5	ø 5.0
	TPD3C3507	TPD3C4007	TPD3C4507	TPD3C5007
	TPD3C3508	TPD3C4008	TPD3C4508	TPD3C5008
	TPD3C3510	TPD3C4010	TPD3C4510	TPD3C5010
	TPD3C3511	TPD3C4011	TPD3C4511	TPD3C5011
	TPD3C3513	TPD3C4013	TPD3C4513	TPD3C5013
	TPD3C3515	TPD3C4015	TPD3C4515	TPD3C5015
ill Tip	0.8mm	0.9mm	1.0mm	1.0mm

Packing Unit : each part

• Processing exclusive use Taper Drill for III fixture diameter and length • Stopper drill with 1mm margin

- Color coding on the shank indicates the fixture diameter
- (Ø 3.5:Yellow, Ø 4.0:Green, Ø 4.5:Blue, Ø 5.0:Red)
- The tip length is 0.8mm~1.0mm

Spec.	ø 6.0	ø 7.0
6	TPD3C6006	TPD3C7006
7	TPD3C6007	TPD3C7007
8.5	TPD3C6008	TPD3C7008
10	TPD3C6010	TPD3C7010
11.5	TPD3C6011	TPD3C7011
13	TPD3C6013	TPD3C7013

• Packing Unit : each part

• Processing exclusive use Taper Drill for Taper Ultra-Wide fixture diameter and

• Stopper drill with 1mm margin

• Color coding on the shank indicates the fixture diameter

(ø 6.0 : Green, ø 7.0 : Blue)

Guide Drill

Sidecut Drill

Ту	pe	Code
Lance Drill	Short	AGDSC
	Long	AGDLC

• Packing Unit : each part

- Forms holes in the bone to facilitate initial drilling
- Bone density can be determined through drilling
- TiN coating improves anti-corrosion and wear resistance

II type

be used.

- Spec. Code

- bone

14.8mm extension of drill length in case of using drill extension

ø2.0

• Install the drill stop in order to adjust the drilling depth to intended level.

	D1	D2	L
OSLMDS	1.5	2.0	13.0
OSLMDL	1.5	2.0	20.0
OSLMD20S	2.0	2.5	13.0
OSLMD20L	2.0	2.5	20.0

• Packing Unit : each part

- Enables the bodily change of drilling direction
- Used to cut the ridge of the extracted socket
- Facilitates site preparation in the extracted socket

Code

• Packing Unit : each part

- Extends the length a drill and other hand tools
- Insertion into an O-ring offers a holding function
- Use by connecting the flat side of the drill handle to the flat side of the drill extension

ADE

• The use of too much force is prohibited

Cortical Drill 2 for TSII, SSII SA

III type

GLOBAL STANDARD OSSTEM IMPLANT

øВ	Mini	Regular	Wide
2.7	APD270C	-	-
3.0	-	APD300C	-
3.8	-	-	APD380C
4.1	-	-	APD410C

• Packing Unit : each part

• Used for the path adjustment of a drilling hole • When using the next size drill, the guide hole enables precise cutting • TiN coating improves anti-corrosion and wear resistance

	F3.5	F4.0	F4.5	F5.0
ll type	2CD35	2CD40	2CD45	2CD50
III type	3CD35	3CD40	3CD45	3CD50
Coloring	Yellow	Green	Blue	Red

• Packing Unit : each part

• It is recommended to drill up to the lower end of the marking line.

• The marking line of II type cortical drill is based on hard bone.

• The lower end marking line of III type cortical drill is based on normal bone and the upper end marking line is based on hard bone.

• The color of handle part means the diameter and kind of main mixture to

- Yellow: F3.5, Green: F4.0, Blue: F4.5, Red: F5.0

	ø 3.5	ø 4.0	ø 4.5	ø 5.0	
;	CD2C35	CD2C40	CD2C45	CD2C50	

• Packing Unit : each part

• Using after making for final drill hole

• Processing exclusive use Drill for fixture diameter

• It is recommend that drilling performs up to under marking line

•	ø 3 .5	ø 4.0	ø 4.5	ø 5.0
9	CD4C35	CD4C40	CD4C45	CD4C50

• Packing Unit : each part

• Cortical bone expansion Drill after using Straight Drill

• Using drill with final hole more than normal bone

• Processing exclusive use Drill for fixture diameter

• The lowest marking line is normal bone and the highest marking line is hard

• It is recommend that drilling performs up to marking line

Taper Cortical Drill for Taper Fixture (TSIII, SSIII, USIII)

Cortical Drill for Ultra-Wide®

Long Shank Countersink for SSII RBM

Long Shank Countersink for USII RBM

Spec.	ø 3 .5	ø 4.0	ø 4.5	ø 5.0
Code	TCD4C35	TCD4C40	TCD4C45	TCD4C50

• Packing Unit : each part

- Drills for expansion of cortical bone after use of taper drill
- It is used after formation of final drill hole in case of hard bone disorder.
- Exclusive drills are available to meet the fixture diameters.
- Lower end marking line is based on 8.5mm or smaller fixture implant.
- Upper end marking line is based on 10mm or larger fixture implant.
- It is recommend that drilling performs up to marking line

Name	Code
F6.0 Cortical Drill	CD4C60
F7.0 Cortical Drill	CD4C70

Regular Ø 4.1 Regular Ø 4.8 Wide Ø 4.8

-

ASCD420C

-

ASCDW420C

• Use after forming a final direct hole in hard bone

øΒ

4.8

4.8

6.0

• SS Mini 에 필요 시 US Mini Countersink를 이용함

- Exclusive drills are available to meet the fixture diameters.
- It is recommend that drilling performs up to marking line

Long

3

Long

Surgical Tap for USII RBM

Parallel Pin

-> <

 Packing

øА	øΒ	Mini	Regular	Wide
2.6	3.5	ACD330C	-	-
2.9	4.1	-	ACD375C	
4.2	5.1	-	-	ACD500C

ASCD350C

-

- Packing Unit : each part
- Form fixture platform

øА

3.5

4.2

4.2

• Packing Unit : each part

• Laser marking 하단부까지 절삭

• Fixture Platform 형성

• Cut down to the bottom of the laser marking

GLOBAL STANDARD OSSTEM IMPLANT

Code

USSCS45W

• Packing Unit : each part

• Instruments for Wide PS, Wide of USIII, USII SA, USIII SA • Recommendation drilling velocity : 300rpm

orm	ø 4.8	ø 4.8	Ø 6.0
D	ø 4.1	Ø	4.8
ort	OSST41SC	OSST48SC	
ng	OSST41LC	OSST	48LC

Packing Unit : each part

• Use for dense bone and form screw thread-shaped fixtures • Use a torque wrench after connecting to the engine or mount extension • TiN coating improves anti-corrosion and wear resistance

D	3.3	3.75	4.0	5.0
Short	-	OUST37SC	OUST40SC	OUST50SC
Long	OUST33LC	OUST37LC	OUST40LC	-

• Packing Unit : each part

• Use for dense bone and form screw thread-shaped fixtures

• Use as a torque after connecting to the engine or a simple mount extension

• TiN coating improves anti-corrosion and wear resistance

Diameter(ø)	Code
ø 4.0	APP400
ø 5.0	APP500
ø 6.0	APP600
Full Set	APPS

g Unit : Individual and general set packing

• Use for checking the direction and location for bone preparation • Predicts the diameter of an abutment to be secured

Ϋ́

GLOBAL STANDARD OSSTEM IMPLANT

meter(ø)	ø 3.6	ø 4.3
Code	ASDG360	ASDG430

Packing Unit : each part

• Measure the depth after the final drilling

Length(mm)	Code
7	ADP607
8.5	ADP608
10	ADP610
11.5	ADP611
13	ADP613
15	ADP615
Full Set	ADP600

• Packing Unit : Individual and general set packing

• Convenient top design facilitates depth drilling

Width(mm)	Code
2.5	APG201
6	APG202
11	APG203

• Packing Unit : Individual and general set packing

Indicates the distance between fixturesUse after the first drilling (2.0)

- Only surgical unlimited wrench
- (If excessive torque is applied, the inside of bone or fixture may be damaged.)
- Rotating direction is marked by an arrow for convenient identification.

GLOBAL STANDARD OSSTEM IMPLANT

be	Mini	Regular
ort	GSNMD32S	GSNMD35S
ng	GSNMD32L	GSNMD35L

Packing Unit: each part

• To enable the simultaneous measurement of gingival height upon treatment, grooves and laser markings are indicated at 1-mm (1-6 mm) intervals

• Stopper designed for the prevention of fracture of the holding part and occurrence of foreign matter such as blood stain during the surgery

Туре	Regular	Wide
Short	SSNOMD39RS	
Long	SSNOM	1D39RL

Packing Unit: each part

• Since the shape is similar to that of the internal fixture driver, even a high torque does not change the inside of the fixture

• Stopper designed for the prevention of fracture of the holding part and occurrence of foreign matter such as blood stain during surgery

Туре	Mini	Regular	Wide
Short	USNMD35MS	USNMD41RS	USNMD51WS
Long	USNMD35ML	USNMD41RL	USNMD51WL

Packing Unit: each part

• To enable the simultaneous measurement of gingival height upon treatment, grooves and laser markings are indicated at 1-mm (1-5 mm) intervals

• Stopper designed for the prevention of fracture of the holding part and occurrence of foreign matter such as blood stain during the surgery

NoMount Torque Driver for TS

Туре	Mini	Regular
Short	GSNMT32S	GSNMT35S
Long	GSNMT32L	GSNMT35L
Extra Long	GSNMT32E	GSNMT35E

• Packing Unit: each part

- To enable the simultaneous measurement of gingival height upon treatment, grooves and laser markings are indicated at 1mm intervals
- Stopper designed for the prevention of fracture of the holding part and occurrence of foreign matter such as blood stain during surgery
- The fracture strength : 260Ncm
- If excessive implant torque is applied, fracture may be resulted in; if unnecessary large implant torque is expected, use a fixture driver. Also, imperfect installation
- may result in fracture at the strength under fracture strength; therefore, perfect installation should be checked before use.

Regular

Wide

• Special attention should be paid; after occurrence of a fracture, restoration is impossible.

NoMount Torque Driver for SS

- Short SSNMT39S Long SSNMT39L
- Packing Unit: each part

Туре

- Since the shape is similar to that of the internal fixture driver, even a high torque does not change the inside of the fixture
- Stopper designed for the prevention of fracture of the holding part and occurrence of foreign matter such as blood stain during surgery
- The fracture strength : 260Ncm
- If excessive implant torque is applied, fracture may be resulted in; if unnecessary large implant torque is expected, use a fixture driver. Also, imperfect installation may result in fracture at the strength under fracture strength; therefore, perfect installation should be checked before use.
- Special attention should be paid; after occurrence of a fracture, restoration is impossible.

Туре	Mini	Regular
Short	GSMFDS	GSRFDS
Long	GSMFDL	GSRFDL
Extra Long	GSMFDE	GSRFDE

• Packing Unit: each part

Fixture connection

• Use to place or remove a fixture after the separation of the mount

Fixture Driver for SS

Fixture Driver for US

USMED

Simple Mount Driver

Short

Platfo

fixture

- of fixtures

∢ ► ø 4.8

Long

Fixture Driver for TS

P

(Regular)

GLOBAL STANDARD OSSTEM IMPLANT

Plaftorm(ø)	Regular	Wide
Short	SSRFDS	
Long	SSF	FDL

• Packing Unit: each part

• The laser marking is designed for checking during the connection of a

• Use for removal following fixture grafting and mount separation

atform(ø)	Mini	Regular	Wide
Code	USMFDL	USRFDL	USWFDL

• Packing Unit: each part

• The laser marking is designed for easy identification during the connection

• Use for removal following fixture grafting and mount separation

Length	Code
Short	ASMDS
Long	ASMDL

Packing Unit: each part

• Use for fixture grafting by connecting to a simple mount • Compact design, internal holding function

Simple Mount Extension

Length	Code
Short	ASMES
Long	ASMEL

Packing Unit: each part

• Use for the extension of fixture mount length by connecting to a torque wrench

TS Bone Profiler

• Packing Unit : Bone Profiler + Guide Screw

- Use to remove the bone around the fixture during the first or second surgery
- It is used for compensation of the shape of healing abutment by eliminating the bone after connection of guide screw with the fixture.
- The guide screw protects the morse taper of the fixtures

Simple Open Wrench

• For weak bone, use to separate the simple mount

Code

• 30° neck angle enhances convenience of insertion in the oral cavity

ASOW

Removal	Tool	for	Fixture	Mount

Code	Application
ERFM	US Mini, TS Mini
HRFR	US Regular, SS Regular/Wide, TS Regular
ERFW	US Wide

Packing Unit: each part

- When a fixture and the fixture mount are stuck, use after removing the fixture mount screw
- Use after the connection to a driver handle and a torque wrench
- Insert vertically and rotate clockwise

GLOBAL STANDARD OSSTEM IMPLANT

	А	ø 3.3	ø 3.8	ø 4.3	ø 4.8	ø 5.3
	Code	OSTP33	OSTP38	OSTP43	OSTP48	OSTP53
	TS	ø4.0/ø4.5	ø4.5/ø5.0	ø 5.0	ø 6.0	ø 6.0
n	SS	-	ø4.8	-	ø 6.0	ø 6.0
t	US	ø4.0	ø 5.0	ø 5.0	ø 6.0	ø 6.0
	It is recommended to use the tissue punch that has the diameter smaller than that of healing abutment by 0.7~1.5mm.					diameter ım.

• Packing Unit: Tissue Punch + Guide Pin

• Tool to be used for flapless surgery

• The laser marking at 2-mm intervals enables the measurement of gingival height

US Bone Profiler

	Platform(ø)			
øA	Mini	Regular	Wide	T-type
4	ABPM400C	-	-	-
5	ABPM500C	ABPR500C	-	-
6	-	ABPR600C	ABPW600C	TBPW600C
7	-	-	ABPW700C	-

• Packing Unit : Bone Profiler + Guide Screw

- Use to remove the bone generated around the cover screws during the second surgery
- After removing the cover screws, connect the guide screw to the fixtures and use for the angle compensation of the healing abutments
- The guide screw protects the hex of the fixtures
- TiN coating improves anti-corrosion and wear resistance

Trephine Drill

, KIT

ABMC

ABMG

ABMB

Code	Inner Dia.(Ø)	Outer Dia.(Ø)	Length
TD37S	3.7	4.5	Short
TD42S	4.2	5.0	Short
TD47S	4.7	5.5	Short
TD52S	5.2	6.0	Short
TD62S	6.2	7.0	Short
TD37	3.7	4.5	Long
TD42	4.2	5.0	Long
TD47	4.7	5.5	Long
TD52	5.2	6.0	Long
TD62	6.2	7.0	Long

• Packing Unit: each part

- Use for the collection of bone or removal of damaged or failed fixtures
- Use for removal of Septal bone
- Trephine drill can be used as initial drill when to implant Ultra Fixture

Bone Mill	Code	ABM
100 C	Packing Unit: each part	
ABMH		

• Forms particulate bone using the collected autogenous bone

Prosthetic KIT (OPK)

Use range	(Use 🚺)			
USII	SSII	TSII	Lilitra wida	N/
USIII	SSIII	TSIII	Ollia-wide	IVI

ORDWS

TS Prosthetic KIT (GSPK)

Prosthetic Tools for OSSTEM IMPLANT

Machine Screw Driver

2.7Int. H

2.0Int. H

- Int. Hex L is 8

kit Kit

	Extra Short	Short	Long	Application
	8	10.3	15.5	-
t	-	ASD05SH	ASD05LH	-
<	AHD09MSH	AHD09SH	AHD09LH	Cover Screw (US Mini)
x	AHD12MSH	AHD12SH	AHD12L H	Healing Abutment,UCLA, CementedAbutment Screw, Mount Screw
lex	-	IHD20H		Esthetic Abutment Screw Regular Esthetic-low Abutment Screw, Standard
lex	-	IHD27H		Wide Esthetic-low Abutment Screw

• Packing Unit: each part

• Tip holding function (note: excluding Int. Hex Type)

Туре	Short	Long	Extra Long	Applicatation
L(Slot)	7	11	-	-
L(Hex)	5	9	15	
0.5Slot	AMSD05S	AMSD05L		-
0.9Hex	AMSD09S	AMSD09L		Cover Screw (US Mini)
1.2Hex	AMSD12S	AMSD12L	AMSD12E	Healing Abutment, UCLA, Cemented Abutment Screw, Mount Screw
2.0Int. Hex	EIHD20			Esthetic Abutment Screw Regular Esthetic-low Abutment Screw, Standard
2.7Int. Hex	EIHD27			Wide Esthetic-low Abutment Screw

Packing Unit: each part

Machine screw driver

• Tip holding function (note: excluding Int. Hex Type)

Prosthetic Tools for OSSTEM IMPLANT

Torque Driver

Туре	Short	Long	Extra Long	Application
L	9.5	15	25	-
0.5Slot	TRSD05S	TRSD05L	TRSD05E	-
0.9Hex	TRHD09S	TRHD09L	-	Cover Screw(US Mini)
1.2Hex	TRHD12S	TRHD12L	TRHD12E	Healing Abutment, UCLA,Cemented Abutment Screw, Mount Screw
2.0Int. Hex	TIHD20S	TIHD20L	-	Standard/ Esthetic Abutment Screw, Regular Esthetic-low Abutment Screw
2.7Int. Hex		TIHD27		Wide Esthetic-low Abutment Screw

Packing Unit: each part

• Driver for torque wrench connection

No tip holding function

- 파절 강도: 62Ncm
- Recommended torque should be observed.
- Application of excessive torque may result in fracture.
- When applying torque, check that the screw hex is completely installed. Application of torque with imperfect installation may result in a fracture at the
- strength under fracture strength.
- Torque should be applied vertically. (Do not tilt the set.)
- If the tip is bent due to the use for a long time or excessive torque, replace it.

Code	AORD
Packing Unit: each part	

• Special-purpose driver for the O-ring abutment

Regular

Excellent Solid Abutment Driver

Long

Short

Long

Short

Long

Solid Abutment Driver

Platform Length Short Long

V

.

Wide

Octa Abutment Driver

_ength

Rigid Outer Driver

Spec.	Mini	Regular			
Abutment D(ø)	ø 4.0	ø 4.0	ø 4.5	ø 5.0	ø 6.0
Short	ORE	MS	ORD45S	ORDRS	ORDWS
Long	ORE	ML	ORD45L	ORDRL	ORDWL

• Packing Unit: each part

- Special-purpose driver for rigid abutment
- Torque : 30Ncm

GLOBAL STANDARD OSSTEM IMPLANT

(ø)	Regular		Wi	de
Туре	Square	Round	Square	Round
t	SDSS	SDRS	SD60S	-
	SDSL	SDRL	-	-

Packing Unit: each part

Solid abutment private driver

• The triangle mark is used by aligning with the abutment groove • Tightening torque : 30Ncm

(ø)	Regular		Wi	de
Туре	Square	Round	Square	Round
t	ESDSS	ESDRS	ESD60S	-
	ESDSL	ESDRL	-	-

Packing Unit: each part

• Excellent solid abutment private driver

• The triangle mark is used by aligning with the abutment groove

• Tightening torque : 30Ncm

Туре	Square	Round
Short	ODSS	ODRS
Long	ODSL	ODRL

Packing Unit: each part

 Octa abutment private driver • Tightening torque : 30Ncm

Prosthetic Tools for OSSTEM IMPLANT

OSSTEM Torque Driver

Туре	Short	Long
L	10	15
1.2 Hex	OTH12S	-
Rigid Ø 4.0	OTR40S	OTR40L
Rigid Ø 4.5	OTR45S	OTR45L
Rigid Ø 5.0	OTR50S	OTR50L
Rigid Ø 6.0	OTR60S	OTR60L
Solid	OTS48S	OTS48L
Excellent Solid	OTE48S	OTE48L

Packing Unit: each part

• Processing private Driver for OSSTEM Torque

• The triangle mark is used by aligning with the abutment groove

• Tightening torque : 30Ncm(except 1.2 Hex Type)

- Solid and Excellent Solid Driver are compatible with ? 4.8 exclusively.
- Impossibility of connection with general hand piece

• 1.2Hex L(Tip length) is 5.

OSSTEM

Packing Unit: each part

Path Probe for GS, TS

	Mini	Regular
Short	GIPAP-3016A	GIPAP-3516A

Packing Unit: each part

- After GS,TS NoMount driver, confirmation path and measurement gingival height
- For mini : Yellow

• For Regular : Green

Finishing Reamer Set

Dalbo Plus Screw Driver

Connector

, KIT

 Packing Unit: each part • Connector used for connecting the driver for square torque to the round

ORC

torque wrench

Code

GLOBAL STANDARD OSSTEM IMPLANT

Code TIDHC Packing Unit: each part • Use by connecting with a torque driver Code ODSD

• Use for the adjustment of retention force of a Dalbo plus attachment

Code	FRSC

• Packing Unit: each part

• Use to remove the lip inside the casting body upon the casting of plastic

* How to use reamer

A. Connect a reamer tip with the same size as the abutment B. Hold the casting body and rotate reamer bite with consistent force C. Do reaming until cutting does not occur any longer

Prosthetic Tools for OSSTEM IMPLANT

CAS-KIT (HCRSNK)

41

- For more information, Please visit www.hiossen.com or see the Surgical Animation or Brochure.

ø4.8

ø 6.0

40

(Components in lower plate)

Fixture Ø	Fø4.0		Fø4.5		Fø5.0		
Bone Density	Soft	Normal	Soft	Soft Normal		Soft Normal	
D	ø 2.8	ø 3.1	ø 3.3	ø 3.6	ø 3.8	ø 4.1	
Code	SNDR2813T	SNDR3113T	SNDR3313T	SNDR3613T	SNDR3813T	SNDR4113T	

- Flexible Drilling speed ranges from low speed to high speed (800rpm)

LAS-KIT (HLRSNK)

LAS Surgical Instruments for OSSTEM IMPLANT

Stopper

Ø 2.0 Twist Drill

CAS-Drill

• Package unit : each part

- A total of eleven (11) stoppers; labeled 2 to 12mm
- Labels indicate the remaining length of the drill (from drill tip to stopper top)
- Each stopper is anodized and color coded. Labels are laser etched.

Drilling Sequence

• This surgical procedure use only Maxillary sinus surgery.

Don't use for Mandible surgery. • For more information, can visit www.hiossen.com

Twist Drill	R	Fixtur	e Ø4.D	Fixtur	e 045	Fixtu	re Ø5.0
Ø2.0		Ø2.8	03.1	Ø3.3	03.6	03.8	041
	u	Soft	Normal	Soft	Normal	Soft	Normal

Fixture Selection		Twist Drill	Drill CAS-Drill					
F(D Ø)	Bone Density	ø2.0	ø2.8	ø3.1	ø 3.3	ø 3.6	ø 3.8	ø 4.1
ø 4.0		•	•					
ø 4.5	Soft	•	•					
ø 5.0		•	•					
ø 4.0		•						
ø 4.5	Normal	•						
ø 5.0		•						

Dome Drill

- Macro and Micro cutting blades offer excellent cutting
- Cutting Speed: 1,200 ~ 1,500 RPM
- Drilling depth controlled with stopper system

Wide dome drill

- Used to widen the window after using Dome drill
- Excellent side cutting ability
- Drilling depth controlled with stopper system
- Cutting Speed: 1,200 ~ 1,500 RPM
- * Caution: Over drilling may cause membrane perforation.

Side wall drill

- Enlarges the window after using Dome drill
- Cutting Speed: 1,500 RPM
- Recommended to use cutting edge 1mm from the bottom.

Ø3.0×6			
T			
ļ			
va	I	d	Iri

• CAS-KIT Stopper 공용	사용으로 깊이 조절 가능
----------------------	---------------

CAS-KIT Stopper(mm)	측면 절삭부 높이 (H:mm)	Side wall drill + CAS-KIT Stopper
12	5	
11	4	進
10	3	
9	2	+
8	1	

LAS-KIT Plus (HLRSNKP)

• Dome drill Ø 5.5/Ø 7.0 & Wide dome drill Ø 7.0, Core drill Ø 5.5/Ø 7.0, Side wall drill, Bone separator, Stopper 0.5 / 1.0 / 1.5 / 2.0 / 2.5/3.0

LAS Surgical Instruments for OSSTEM IMPLANT

• LAS-KIT Plus have a 5 tools of sinus lift in lower plate.

* Composition of lower plate Freer Elevator : FREL Bone Graft Carrier : BGCR Membrane Separator : MBSP Sinus Curette : Short - SNCRS Sinus Curette : Long - SNCRL

Instrument	D.	Code
Domo drill	ø 5.5	LSDR554TD
Dome drill	ø7.0	LSDR74TD
Wide dome drill	ø7.0	LSDR74WTD
Coro drill	ø5.5	LSDR554TC
COLE CLIII	ø7.0	LSDR74TC
Side wall Drill	-	SWDR36T
Bone Separator	-	HST75

Stopper	0.5	1.0	1.5	2.0	2.5	3.0
Code	LSNSH0.5	LSNST1.0	LSNST1.5	LSNST2.0	LSNST2.5	LSNST3.0

MS KIT (OMSK)

Use range	(Use 🗾)			
USII	SSII	TSII	Lilitro wido	NA
USIII	SSIII	TSIII	Ultra-wide	IVI

Ortho KIT (OOKS)

Bone Screw KIT (BSSTKT)

Use range (Use						
USII	SSII	TSII	Lilitra wida	MQ	08	DC
USIII	SSIII	TSIII	Ollia-wide	MO	03	00

Universal Handle OUH

Custom KIT(OCTK)

Use range (Use 🗾)					
USII	SSII	TSII	Lilitra wida	MQ	08
USIII	SSIII	TSIII	Ultra-wide	1410	03

Osteo KIT (OSTK)

ОСТК

- When only part in the surgical operation organization sterilization, uses.
- Composition of additional rubber (small, middle, large)
- Use for autoclave (132°c, 15min)

озтк

• Concave Osteotome : Use for maxillary sinus elevation for the vertical expansion of the volume of alveolar bone available in the maxillary posterior

• Expanding Osteotome : Without cutting low-quality bone, the preservation of the bone densifies the bone trabeculato enhance the initial bonding of implants

• Stopper for the adjustment of surgical depth

Dia.	Concave type	Expanding type
ø 2.0mm	OST20CA	OST20EA
ø 2.5mm	OST25CA	OST25EA
ø 3.0mm	OST30CA	OST30EA
ø 3.5mm	OST35CA	OST35EA
ø 4.0mm	OST40CA	OST40EA
Mallet	OSTMP	

Osteotome KIT (AOST)

Sinus KIT (ASLK)

AOST

- Use for maxillary sinus elevation for the vertical expansion of the volume of alveolar bone available in the maxillary posterior
- Includes only the concave type
- Stopper for the adjustment of surgical depth

Dia.	Concave type
ø 2.0mm	OST20CA
ø 2.5mm	OST25CA
ø 3.0mm	OST30CA
ø 3.5mm	OST35CA
ø 4.0mm	OST40CA
Mallet	OSTM

ASLK

- Various types of tools (5) used for the sinus procedure
- Sinus operation instrument for lateral approach

* 5 components

Freer Elevator : OFE

- Bone Graft Carrier : OBGC
- Membrane Separator (Circle type) : OMSC Sinus Currette-Short : OSCS
- Sinus Currette-Long : OSCL

Abutment Selector [TSASK]

Bone Spreader KIT (OBSOK)

TSASK

• The kits to be selected before selecting an abutment.

% Component

- Rigid each 2ea. Total 28ea
- Angled each 1ea. Total 6ea
- Caution : Kit case sterilization impossibility

OBSOK

- Use for alvelar bone expansion
- Offset type for easy operation
- * Components
- OBSO22F, OBSO28F, OBSO35F, OBSO35R

• Use for alveolar bone expansion

- Offset type for easy operation
- Depth marking corresponding to the implant length.

Tip length	7	8.5	10	11.5
ness	1.15	1.3	1.45	1.6
lth	2.1	2.2	2.2	2.2
ness	1.15	1.3	1.45	1.6
lth	2.65	2.8	2.8	2.8
ness	1.3	1.45	1.6	1.8
lth	3.3	3.5	3.5	3.5
ness	1.85	2.1	2.3	2.55
lth	3.3	3.5	3.5	3.5

(Unit : mm)

Ridge Split KIT- Straight (ORSSK)

Ridge Split KIT- Offset (ORSOK)

ORSSK

* Components

Ridge Split Chisel : ORSS15, ORSS20, ORSS25, ORSS30 Blade Holder : ORSBH

נהרהההההההה

- Chisel : Use for alvelar bone expansion
- Blade Holder : enables malletting for soft bone

Malletting	Malletting
1	3 🖡
Directions for use : ref	er to the above schematic.

					(Unit : mm)
Code	Tip length Spec.	7	8.5	10	11.5
	Thickness	1.1	1.27	1.5	1.5
000010	Width	4	4	4	4
000000	Thickness	1.45	1.7	2.0	2.0
083520	Width	4	4	4	4
OBSSS	Thickness	1.8	2.15	2.5	2.5
085525	Width	4	4	4	4
OBSS20	Thickness	2.15	2.5	3.0	3.0
043530	Width	4	4	4	4

• Use for alvelar bone expansion

Offset type for easy operation

Code	Tip length Spec.	7	8.5	
	Thickness	1.1	1.27	
083015	Width	4	4	
000000	Thickness	1.45	1.7	
083020	Width	4	4	
000005	Thickness	1.8	2.15	
083025	Width	4	4	
000000	Thickness	2.15	2.5	
043030	Width	4	4	

-- 11.5

ORSOK

* Components

Ridge Split Chisel : ORSO15, ORSO20, ORSO25, ORSO30 Blade Holder : ORSBH

	(Unit : mm)
10	11.5
1.5	1.5
4	4
2.0	2.0
4	4
2.5	2.5
4	4
3.0	3.0
4	4

OsstemGuide[™] Surgical Components

OsstemGuide[™] Surgical Components

1. Implant System

- The implants that can be used with OsstemGuide are Osstem and the tapered type implant system of Hiossen implant.

- ▶ If 1 or 15mm fixture is used, you should purchase the exclusive drill.
- 2. Surgical Kit (Code : OGDK) components

TD13

2	Anchor Screw
	• QGAS18

Issue punch QGTP33M OGTP38B • QGTP47R • QGTP53W

Initial drill

• QGTD3808

• QGTD3810

• OGTD3811

• QGTD3813

• QGTD4308

• QGTD4310

• QGTD4311

• QGTD4313

 $\mathbf{\nabla}$ Drill Guide • QGDG20M • QGDG30M • QGDG20R • QGDG30R • QGDG33R

 QGDG38R • QGDG20W • QGDG30W • QGDG38W • QGDG43W

3 1.2 Hex hand driver · AHD12SH • AHD12LH

-71 1.2 Hex torgue driver • TRHD12S • TRHD12L

=

Mount Driver ASMDS

Mount Extension

Removal Tool • QGRTR

ASMES

USIII Countersink OGUSCS45W

• AKB OSSTEM IMPLANT

Kit Steel bowl

 Ratchet Wrench
 • CITQW-1185A

austan ages aranch for Kingle Mount

• ASOW

Open Wrench

shown below.

L	ø 2.0	ø 3.0	ø 3.3	ø 3.6	ø 3.8	ø 4.1	ø 4.3	ø 4.6
7	QGTD2007 *	QGTD3007 *	QGTD3307 *	QGTD3607 *	QGTD3807 *	QGTD4107 *	QGTD4307 *	QGTD4607 *
8.5				QGTD3608 *		QGTD4108 *		QGTD4608 *
10				QGTD3610 *		QGTD4110 *		QGTD4610 *
11.5				QGTD3611 *		QGTD4111 *		QGTD4611 *
13				QGTD3613 *		QGTD4113 *		QGTD4613 *
15	QGTD2015 *	QGTD3015 *	QGTD3315 *	QGTD3615 *	QGTD3815 *	QGTD4115 *	QGTD4315 *	QGTD4615 *
Drill Guide				QGDG36R * (Regular)		QGDG41R * (Regular)		QGDG46W * (Wide)

3. Specific features of surgical drills

- All the drills have the stoppers to meet OsstemGuide drill guides.
- Each drill has additional 10mm of length to meet the installation height of surgical template and drill guide.
- 8.5mm drill is laser-marked at 7/8.5/10/11.5/13/15mm and can be used in common operation without OsstemGuide, too. Especially, although the lateral side of the drill touches the gingival during flapless operation, the gingival is not damaged.
- The length of Ø 2.0 drill tip is 0.6mm, Ø 3.0 drill tip is 0.9mm, and Ø 3.3 ~ Ø 4.6 drill tip is 1mm.

- The tools that are clinically needed in addition to the tools included in OsstemGuide KIT are shown in the list

The products marked with " * " are not included in the kit and you should purchase them if needed.

5. OsstemGuide[™] Mount

- It is the exclusive mount for OsstemGuide operation and is used for implantation after combination with the fixture. The configuration is different by the specification of the system.

Use it to meet the color of the sleeve combined with OsstemGuide template.

System	사양	Fixture 직경	Code			Color
	Mini	3.5	QGHGM	N		Yellow
TS/GS	Regular	4.0, 4.5	QGHGMI	7		Green
	Wide	5.0	QGHGM	N		Purple
System	사양	Platform 직경	G/H	Cod	de	Color
	Degular	4.9	1.8	OGSSI	VR18	Green
SS	Regular	4.0	2.8	OGSS	MR28	Green
	Wide	6.0	2.0	OGSSN	AW20	Purple

System	사양	Fixture 직경	Code	Color
	Mini	3.5	OGUSMM	Yellow
US	Regular	4.0 4.5	OGUSMR	Green
	Wide	5.0	OGUSMW	Purple

TS / GS Mount

SS Mount

US Mount

• KIT

6. OsstemGuide[™] Cylinder & Cylinder Pin

- It is the exclusive prosthesis manufacturing produce for OsstemGuide and is used with combination with common fixture lab analog.

Use it to meet the color of the sleeve combined with OsstemGuide template.

System	사양	Fixture 직경	Code			Color
	Mini	3.5	QGHGCG	М		Yellow
TS/GS	Regular	4.0, 4.5	QGHGCG	R	Green	
	Wide	5.0	QGHGCG	W	Purple	
			·			
System	사양	Platform 직경	G/H	Co	de	Color
	Deculer	4.0	1.8	OGSS	CGR18	Green
SS	Regular	4.0	2.8	OGSS	CGR28	Green
	Wide	6.0	2.0	OGSSC	CGW20	Purple
System	사양	Fixture 직경	Code			Color
	Mini	3.5	OGUSCG	М		Yellow
US	Regular	4.0 4.5	OGUSCG	R	Green	
	Wide	5.0	OGUSCG	W		Purple

TS / GS Cylinder & Cylinder Pin

SS Cylinder & Cylinder Pin

US Cylinder & Cylinder Pin

AutoBone Collector

Screw removal KIT (OSSVK)

Components

AutoBone Collector

Name	D	Code
Drill [Short]	ø7.0	ABCD7014S
Stopper [Short]	ø7.0	ABCSNST7144S
Drill [Long]	ø7.0	ABCD7017L
Stopper [Long]	ø7.0	ABCSNST7174L

- Drill length : Long, Short.

- Drill speed : 300~600rpm Caution : Recommend sterilize in an autoclave before surgery for drill and stopper.

Bone Ejector

Name	Code
Bone Ejector	ABBE71L

Hiossen

Fiector	the h	avested	Bone	in	stopper.
LIOOLOI	1101	10,00,000	DOING		otoppor.

		사용 Tool		
1	Saraw Erectura	Torque-free	Non-load mode where fragments of the abutment screws are left on the fixture, and for which torque has been released, when the screws are broken during dental prosthesis or when in use	Guide, Abutment Removal Handle, Reverse Driver, Screw Holder, Connector
2	Screw Fracture	Wedging	Mode whereby fragments of the abutment screws are left on the fixture with torque intact, or when wedging takes place, and is stubbornly fixed when the screws are broken during dental prosthesis or when in use	Guide, Abutment Removal Handle, Removal Bur, Screw Remover
3	Abutment Fail	Fracture	Mode where wedging takes place on the fragments of the abutment on the fixture, and is stubbornly fixed when the abutments are broken during use	Abutment Removal Handle & Tip
4	Abutment i ali	Wedging	Mode where the abutments are caught in the fixture, and not released	Abutment Separate Tool
5	Fixture Fail	Thread Damage	Mode where the screws are not connected with the thread of the fixture because of damage caused to the threads during the connection and removal of the screws	Re-tap

Screw removal Tools for OSSTEM IMPLANT

Reverse Driver

	Mini	Regular/ Wide
Short	-	ORVDRS
Long	ORVDML	ORVDRL

• Tool for removing broken screws

• Packing Unit : each part

- This tool should be used together with the guide for each system
- When the marked part of the reverse drill is exposed above the guide connected
- to the fixture, make use of the screw-older to remove the broken Screws
- Hand type
- Mode: Counter clockwise
- Lifecycle: Ten uses
- Color coding for easy discrimination of the specifications
- Mini: Yellow, Regular/ Wide : Green

• Packing Unit : each part

- Guide used to prevent the reverse driver, the removal bur and the re-tap from centering or vibrating
- The guide should be used after connecting to the abutment removal handle
- Color coding for easy discrimination of the specifications
- Mini: Yellow, Regular : Green, Wide : Blue

Abutment Removal Tip

Mini

- fixture

Screw Holder

Hex Non-Hex

TS

Guide

Octa Non-Octa

SS

Hex

US

Code OSHM OSHR OSHW		Mini	Regular	Wide
	Code	OSHM	OSHR	OSHW

- Packing Unit : each part
- This tool is used for removal of fractured screw; expose the fractured screw by 1-2 threads using a reverse driver, push it on the fractured screw for
- combination, and remove the fractured screw.
- Color coding for easy discrimination of the specifications Mini: Yellow, Regular : Green, Wide : Blue

Regular

Wide

-

-

OUGW

OSGRN

OSGR

GLOBAL STANDARD OSSTEM IMPLANT

	Mini(M1.6)	Regular(M2.0)	Wide(M2.5)
Code	ORTM	ORTR	ORTW

• Packing Unit : each part

• Tool used for forming new threads if a screw is not connected because the threads inside the fixture have been damaged

Color coding for easy discrimination of the specifications

Mini: Yellow, Regular : Green, Wide : Blue

	Mini	Regular
Code	OARTM	OARTR

• Packing Unit : each part

• This tool is used when part of a broken abutment or mount gets caught in the

• Remove the fragment by shaking it with a forceps when connecting the

fragment into the hole of the broken abutment, and then turn the connected part counter clock wise and fix the part

• This tool is also used for removing a screw if it is not possible to remove the screw because the hex of the screw has slipped in the case of the Mini

- It is possible to remove the screw by turning the screw counterclockwise and fixing the screw after connecting it to the slipped hex

* Mini: Makes it possible to remove a screw whose hex has slipped

Code OARH

• Packing Unit : each part

• This tool should be used in conjunction with the guide

Screw removal Tools for OSSTEM IMPLANT

GLOBAL STANDARD OSSTEM IMPLANT

Code	OSR

• Packing Unit : each part

• Rotate the screw remover in the reverse direction in the hole of the broken surface of the screw formed by the removal bur to remove a broken screw • Mode: Counter clockwise

Туре	Code
Driver	TASD
Body	TASB
Set	TAST

Packing Unit : each part

• This tool is used for removing the transfer abutment of non-hex-type caught in the fixture as a result of contact with a Morse Taper • The terminal of the body is the Mini. The standard tool is inserted into the grooves in two stages in common use

• Insert the separate tool body into the hole inside the abutment after removing the abutment screw, and tighten the driver in a clockwise direction to combine the body and the abutment for easy separation Use the tool after connecting the ratchet wrench to the driver, if it is hard

Drilling Sequence for TSIII / SSIII SA / SSIII RBM / USIII SA / USIII RBM

TSIII / SSIII SA / SSIII RBM / USIII SA / USIII RBM Fixture (Straight Drill)

10mm Bone Pilot Drill (2.0/3.0) Pilot Drill (3.0/3.8) ø 2.0 Drill ø 3.0 Drill Quality Soft Normal ► Hard USIII Wide PS Fixture Ø 4.5mm Fixture (Length:10mm) 10mm Bone Pilot Drill (2.0/3.0)

Ø 4.5mm Fixture

(Length:10mm)

TIX .

* Recommended implant torque : 40Ncm or less

* TSIII HA Fixture, SSIII Fixture (Recommended implant torque : 35Ncm or less) - It may crack or separate HA coating layer in case of hard bone and the use is not guided.

**** TS/GS** fixture implant depth guide

- In case of normal or higher-quality bone, it is recommended to implant deeper than bone level by 1mm or less.

- In case of soft bone, it is recommended to implant to meet the bone level for maintenance of anchoring force.

* CounterSink is available as a single unit for Wide PS 4.5 of USIII Fixture. (Produce code : USSCS45W / Recommended drilling speed : 300rpm)

ø 2.0 Drill

Quality

Soft

Normal

Hard

**** TS/GS fixture implant depth guide**

- In case of normal or higher-quality bone, it is recommended to implant deeper than bone level by 1mm or less. - In case of soft bone, it is recommended to implant to meet the bone level for maintenance of anchoring force.

ø 3.0 Drill

KIT 00

Drilling Sequence for

TSIII / SSIII SA / SSIII RBM / SSIII HA / USIII SA / USIII RBM

TSIII / SSIII SA / SSIII RBM / SSIII HA / USIII SA / USIII RBM (Taper Drill)

Ø 3.5mm Fixture (Length :10mm)

US III Wide PS Fixture Ø 4.5mm Fixture (Length :10mm)

Ø 4.5mm Fixture (Length :10mm)

* CounterSink is available as a single unit for Wide PS 4.5 of USIII Fixture. (Produce code : USSCS45W / Recommended drilling speed : 300rpm)

Ø 5.0mm Fixture (Length :10mm)

**** TS/GS fixture implant depth guide**

- In case of normal or higher-quality bone, it is recommended to implant deeper than bone level by 1mm or less.
- In case of soft bone, it is recommended to implant to meet the bone level for maintenance of anchoring force.

Ø 4.0mm Fixture (Length :10mm)

- * Recommended implant torque : 40Ncm or less
- * TSIII HA Fixture, SSIII Fixture (Recommended implant torque : 35Ncm or less) - It may crack or separate HA coating layer in case of hard bone and the use is not guided.
- **** TS/GS fixture implant depth guide**
- In case of normal or higher-quality bone, it is recommended to implant deeper than bone level by 1mm or less.
- In case of soft bone, it is recommended to implant to meet the bone level for maintenance of anchoring force.
 - 68

Drilling Sequence for TSII / SSII SA / USII SA

TSII / SSII SA / USII SA Fixture

Ø 3.5mm Fixture (Length :10mm)

Ø 4.5mm Fixture (Length :10mm)

Ø 4.0mm Fixture (Length :10mm)

Ø 5.0mm Fixture (Length :10mm)

* Recommended implant torque : 40Ncm or less

* TS/GS fixture implant depth guide

- In case of normal or higher-quality bone, it is recommended to implant deeper than bone level by 1mm or less.

- In case of soft bone, it is recommended to implant to meet the bone level for maintenance of anchoring force.

70

- In case of normal or higher-quality bone, it is recommended to implant deeper than bone level by 1mm or less. - In case of soft bone, it is recommended to implant to meet the bone level for maintenance of anchoring force.

Drilling Sequence for TSIV

TSIV Fixture (Straight Drill)

Ø 4.5mm Fixture (Length :10mm)

ø 5.0mm Fixture (Length :10mm)

KIT .

- * Recommended implant torque : 40Ncm or less
- * TSIV Fixture is used for implantation in maxillary sinus or soft bone and, in case of normal or higher-quality bone, guide is not required.
- * TSIV Fixture has large thread pitch and high implantation speed; therefore, it is recommended to perform implantation with reduction of the speed to 15rpm or lower level.

Ø 4.0mm Fixture (Length : 10mm)

Ø 4.5mm Fixture (Length :10mm)

Ø 5.0mm Fixture (Length :10mm)

- * Recommended implant torque : 40Ncm or less
- guide is not required.
- * TSIV Fixture has large thread pitch and high implantation speed; therefore, it is recommended to perform implantation with reduction of the speed to 15rpm or lower level.

Implant placement

* TSIV Fixture is used for implantation in maxillary sinus or soft bone and, in case of normal or higher-quality bone,

Drilling Sequence for SSII RBM

Drilling Sequence for USII RBM

SSII RBM Fixture

ø 3.3mm Fixture (Length : 10mm)

ø 4.1mm Fixture (Length : 10mm)

Ø 4.8mm Fixture (Length : 10mm)

• KIT

* Recommended implant torque : 40Ncm or less

Ø 3.3mm Fixture (Length :10mm)

Ø 3.75mm Fixture (Length : 10mm)

* Recommended implant torque : 40Ncm or less

Drilling Sequence for USII RBM

Drilling Sequence for Ultra-Wide®

USII RBM Fixture

ø 4.0mm Fixture (Length : 10mm)

Ø 6.0 mm Fixture (Length : 10mm)

Ø 5.0mm Fixture (Length : 10mm)

Ø 7.0 mm Fixture (Length : 10mm)

* Recommended implant torque : 40Ncm or less

Drilling Sequence for Ultra-Wide[®]

SSII / USII RBM Ultra-Wide[®] Fixture

Immediate placement at the extraction socket (Ø 6.0 Ultra-Wide[®] fixture, Length : 10mm)

Immediate replacement of the failed implant (Ø 6.0 Ultra-Wide[®] fixture, Length : 10mm)

Ø 6.0 mm Fixture (Length : 10mm)

Ø 7.0 mm Fixture (Length : 10mm)

* Recommended implant torque : 40Ncm or less

- * TS/GS fixture implant depth guide
- In case of normal or higher-quality bone, it is recommended to implant deeper than bone level by 1mm or less.
- In case of soft bone, it is recommended to implant to meet the bone level for maintenance of anchoring force.

Drilling Sequence for Ultra-Wide®

TSIII Ultra-Wide Fixture (Taper Drill)

Ø 6.0 mm Fixture (Length : 10mm)

Ø 7.0 mm Fixture (Length : 10mm)

*** Recommended implant torque : 40Ncm or less**

* TS/GS fixture implant depth guide

- In case of normal or higher-quality bone, it is recommended to implant deeper than bone level by 1mm or less.

- In case of soft bone, it is recommended to implant to meet the bone level for maintenance of anchoring force.

① During operation, keep used tools in saline solution or in distilled water.

(2) When the operation has been completed, soak all the used tools in alcohol for washing.

How to manage KIT

③ Wash blood stains and other foreign matter clean with distilled water or flowing water.

④ Remove the moisture with a dry cloth or a hot air blower.

(5) Set the dried tools in the KIT case.

6 After setting, sterilize the kit in an autoclave at 132 °c for 15 minutes and store room temperature.

Caution: After an operation, separate all the tools used in the operation immediately, and wash them before storage. It is highly recommended to sterilize the Surgical KIT again before an operation (temperature: 132°C, time: 15 min) The warranty period of the Surgical KIT is One Year after first opening the package, and the warranty cycles of the Drills and Drivers is 50 cycles.

81

Washing with hydrogen peroxide is prohibited. Exposure to hydrogen peroxide may discolor the laser marking and TiN coating.

(Refer to the color coding for setting the tools in the kit case.)

Actual Dimensions of TSIII / TSIII HA / SSIII SA / SSIII HA / SSIII RBM / USIII SA / USIII RBM

Actual Dimensions of TSII / USII SA

TSIII / TSIII HA / SSIII SA / SSIII HA / SSIII RBM / USIII SA / USIII RBM Fixture

					(단위, mm)
	L	D1	D2	D3	L1
	8.5	3.8	3.4	2.5	1.3
Fisture 0 F	10.0	3.8	3.3	2.5	1.3
Fixture 3.5	11.5	3.8	3.2	2.5	1.3
	13.0	3.8	3.2	2.5	1.3
	15.0	3.8	3.1	2.5	1.3
	L	D1	D2	D3	L1
	7.0	4.3	4.0	2.8	1.0
	8.5	4.3	3.9	2.8	1.3
Fixture 4.0	10.0	4.2	3.8	2.8	1.3
	11.5	4.2	3.7	2.8	1.3
	13.0	4.2	3.7	3.1	4.0
	15.0	4.2	3.7	3.1	5.0
	L	D1	D2	D3	L1
	7.0	4.7	4.4	3.1	1.0
	8.5	4.6	4.3	3.1	1.3
Fixture 4.5	10.0	4.6	4.2	3.1	1.3
	11.5	4.6	4.1	3.1	1.3
	13.0	4.6	4.1	3.5	4.0
	15.0	4.6	4.1	3.5	5.0
	L	D1	D2	D3	L1
	6.0	5.1	4.9	3.7	1.0
	7.0	5.1	4.9	3.7	1.0
Eixturo 5.0	8.5	5.1	4.8	3.7	1.3
Fixture 5.0	10.0	5.1	4.8	3.7	1.3
	11.5	5.1	4.7	3.7	1.3
	13.0	5.1	4.8	4.0	4.0
	15.0	51	47	4.0	5.0

	L	D1
	8.5	3.5
Fixture 3.5	10.0	3.5
	11.5	3.5
	13.0	3.5
	15.0	3.5
	L	D1
	7.0	4.2
Fixture 4.0	8.5	4.2
	10.0	4.2
(USII 5A)	11.5	4.2
	13.0	4.2
	15.0	4.2
	L	D1
Fixture 4.0 (TSII SA)	7.0	4.2
	8.5	4.2
	10.0	4.2
	11.5	4.2
	13.0	4.2
	15.0	4.2
	L	D1
	7.0	4.4
	8.5	4.4
Fixture 4.5	10.0	4.4
	11.5	4.4
	13.0	4.4
	15.0	4.4
	L	D1
	6.0	5.0
	7.0	4.9
Eixturo 5.0	8.5	4.9
Fixture 5.0	10.0	4.9
	11.5	4.9
	13.0	4.9
	15.0	49

		(단위, mm)
D2	D3	L1
3.5	2.6	2.0
3.5	2.6	2.5
3.5	2.6	2.5
3.5	2.6	2.5
3.5	2.6	2.5
D2	D3	L1
4.1	2.9	1.5
4.1	2.9	2.0
4.1	2.9	2.5
4.1	2.9	2.5
4.1	2.9	2.5
4.1	2.9	2.5
D2	D3	L1
4.2	2.9	1.5
4.2	2.9	2.0
4.2	2.9	2.5
4.2	2.9	2.5
4.2	2.9	2.5
4.2	2.9	2.5
D2	D3	L1
4.4	3.1	1.5
4.4	3.1	2.0
4.4	3.1	2.5
4.4	3.1	3.0
4.4	3.1	3.0
4.4	3.1	3.0
D2	D3	L1
5.0	4.3	0.5
4.9	3.3	2.0
4.9	3.3	2.0
4.9	3.3	2.5
4.9	3.3	3.0
4.9	3.3	3.0
4.9	3.3	3.0

Actual Dimensions of SSII SA

SSII SA Fixture

	D1
-	
-	
1	-
-	
D2 -	
2	45
	D3
	TSIV SA

D1

					(27, 111)
	L	D1	D2	D3	L1
	7.0	4.1	4.1	3.3	1.5
	8.5	4.1	4.1	3.3	2.0
Fixture 4.0	10.0	4.1	4.1	3.3	2.5
	11.5	4.1	4.1	3.3	2.5
	13.0	4.1	4.1	3.3	2.5
	15.0	4.1	4.1	3.3	2.5
	L	D1	D2	D3	L1
	7.0	4.4	4.4	3.7	1.5
	8.5	4.4	4.4	3.7	2.0
Fixture 4.5	10.0	4.4	4.4	3.7	2.5
	11.5	4.4	4.4	3.7	2.5
	13.0	4.4	4.4	3.7	2.5
	15.0	4.4	4.4	3.7	2.5
	L	D1	D2	D3	L1
	6.0	5.0	5.0	4.2	1.5
	7.0	4.9	4.9	4.2	1.5
	8.5	4.9	4.9	4.2	2.0
Fixture 5.0	10.0	4.9	4.9	4.2	2.5
	11.5	4.9	4.9	4.2	2.5
	13.0	4.9	4.9	4.2	2.5
	15.0	4.9	4.9	4.2	2.5

L

Actual Dimensions of TSIV SA

		(단위, mm)
D2	D3	L1
3.8	1.8	2
3.9	1.8	3
4.0	1.8	4
4.0	1.8	5
4.0	1.8	6
D2	D3	L1
4.0	2.0	2
4.2	2.0	3
4.3	2.0	4
4.3	2.0	5
4.3	2.0	6
D2	D3	L1
4.3	2.2	2
4.6	2.2	3
4.7	2.2	4
4.7	2.2	5
4.6	2.2	6

Actual Dimensions of SSII RBM

SSII RBM Fixture

KIT .

					(단위, mm)
	L	D1	D2	D3	L1
	8.5	3.3	3.3	2.7	2.5
Mini	10.0	3.3	3.3	2.7	2.5
P3.5 / ø3.3	11.5	3.3	3.3	2.7	2.5
	13.0	3.3	3.3	2.7	2.5
	15.0	3.3	3.3	2.7	2.5
	L	D1	D2	D3	L1
	7.0	4.1	4.1	2.9	2.2
Regular	8.5	4.1	4.1	2.9	2.2
	10.0	4.1	4.1	3.2	3.0
F4.07 Ø4.1	11.5	4.1	4.1	3.2	3.0
	13.0	4.1	4.1	3.2	3.0
	15.0	4.1	4.1	3.2	3.0
	L	D1	D2	D3	L1
	7.0	4.8	4.8	3.9	2.2
Begular	8.5	4.8	4.8	3.9	3.0
	10.0	4.8	4.8	3.9	3.0
F4.07 94.0	11.5	4.8	4.8	3.9	3.0
	13.0	4.8	4.8	3.9	3.0
	15.0	4.8	4.8	3.9	3.0
	L	D1	D2	D3	L1
	7.0	4.8	4.8	4.0	2.2
Wide	8.5	4.8	4.8	4.0	2.2
	10.0	4.8	4.8	3.9	3.0
F0.07 Ø4.0	11.5	4.8	4.8	3.9	3.0
	13.0	4.8	4.8	3.9	3.0
	15.0	4.8	4.8	3.9	3.0

Actual	Dimens	ions	0

USII RBM

					(단위, mm)
	L	D1	D2	D3	L1
	8.1	3.3	3.3	2.0	2.0
Mini	9.6	3.3	3.3	2.5	2.0
P3.5 / ø2.4	11.1	3.3	3.3	2.5	2.0
	12.6	3.3	3.3	2.5	2.0
	14.6	3.3	3.3	2.5	2.0
	L	D1	D2	D3	L1
	6.6	3.7	3.7	2.3	2.0
Begular	8.1	3.7	3.7	2.3	2.0
$D_{1} = \frac{1}{2} \frac{1}$	9.6	3.7	3.7	2.3	2.5
P4.17 Ø3.75	11.1	3.7	3.7	2.3	2.5
	12.6	3.7	3.7	2.3	2.5
	14.6	3.7	3.7	2.3	2.5
	L	D1	D2	D3	L1
	6.6	4.0	4.0	2.5	2.0
Regular P4.1 / ø4.0	8.1	4.0	4.0	2.5	2.0
	9.6	4.0	4.0	2.5	2.5
	11.1	4.0	4.0	2.5	2.5
	12.6	4.0	4.0	2.5	2.5
	14.6	4.0	4.0	2.5	2.5
	L	D1	D2	D3	L1
	6.6	5.0	5.0	3.3	2.0
Wide	8.1	5.0	5.0	3.3	2.0
P51/a50	9.6	5.0	5.0	3.0	2.5
F 5.17 Ø 5.0	11.1	5.0	5.0	3.0	2.5
	12.6	5.0	5.0	3.0	2.5
	14.6	5.0	5.0	3.0	2.5
	L	D1	D2	D3	L1
	6.6	5.5	5.5	3.6	2.0
Wide	8.1	5.5	5.5	3.6	2.0
P51/055	9.6	5.5	5.5	3.3	2.5
10.17 90.0	11.1	5.5	5.5	3.3	2.5
	12.6	5.5	5.5	3.3	2.5
	14.6	5.5	5.5	3.3	2.5

87

of USII RBM

Actual Dimensions of GSII / SSII / USII RBM Ultra-Wide

Actual Dimensions of TSIII SA Ultra-Wide

GSII / SSII / USII RBM Ultra-Wide Fixture

				(단위, mm)
L	D1	D2	D3	L1
6.0	6	5.5	4.5	1.4
7.0	6	5.2	4.3	1.5
8.5	6	5.1	4.2	2
10.0	6	5.1	4.2	2.8
11.5	5.9	5.0	4.2	3.3
13.0	5.9	5.0	4.2	4.5
L	D1	D2	D3	L1
6.0	6.8	6.4	5.4	1.4
7.0	6.8	6	5.2	1.5
8.5	6.8	5.9	5.1	2.5
10.0	6.8	5.8	5.1	3
11.5	6.8	5.7	5.0	4
13.0	6.8	5.7	4.9	5
	L 6.0 7.0 8.5 10.0 11.5 13.0 L 6.0 7.0 8.5 10.0 11.5 13.0	L D1 6.0 6 7.0 6 8.5 6 10.0 6 11.5 5.9 13.0 5.9 13.0 5.9 16.0 6.8 7.0 6.8 8.5 6.8 10.0 6.8 11.5 6.8 11.5 6.8 11.5 6.8 13.0 6.8	LD1D26.065.57.065.28.565.110.065.111.55.95.013.05.95.013.06.86.47.06.868.56.85.910.06.85.811.56.85.713.06.85.7	LD1D2D36.065.54.57.065.24.38.565.14.210.065.14.211.55.95.04.213.05.95.04.213.06.86.45.47.06.865.28.56.85.95.110.06.85.85.111.56.85.75.013.06.85.74.9

					(단위, mm)
	L	D1	D2	D3	L1
	6.0	5.9	5.9	4.8	1.5
	7.0	5.9	5.9	4.8	1.5
Fixture 6.0	8.5	5.9	5.9	4.7	2
	10.0	5.9	5.9	4.7	2
	11.5	5.9	5.9	4.7	2.5
	13.0	5.9	5.9	4.7	2.5
	I	D1	D2	D3	11
	60	69	6.9	5.8	1.5
	7.0	6.9	6.9	5.8	1.5
Fixture 7.0	8.5	6.9	6.9	57	2
	10.0	6.9	6.9	5.7	2
	11.5	6.9	6.9	5.7	2.5
	13.0	6.9	6.9	5.7	2.5

※ SS Ultra 는 L=6mm 제외

